Issue 15, 2006

A kinetic study of the reactions FeO+ + O, Fe+·N2 + O, Fe+·O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere

Abstract

These gas-phase reactions were studied by pulsed laser ablation of an iron target to produce Fe+ in a fast flow tube, with detection of the ions by quadrupole mass spectrometry. Fe+·N2 and Fe+·O2 were produced by injecting N2 and O2, respectively, into the flow tube. FeO+ was produced from Fe+ by addition of N2O, or by ligand-switching from Fe+·N2 following the addition of atomic O. The following rate coefficients were measured: k(FeO+ + O → Fe+ + O2, 186–294 K) = (3.2 ± 1.5) × 10−11; k(Fe+·N2 + O → FeO++ N2, 294 K) = (4.6 ± 2.5) × 10−10; k(Fe+·O2 + O → FeO+ + O2, 294 K) = (6.3 ± 2.7) × 10−11; and k(FeO+ + CO → Fe+ + CO2, 294 K) = (1.59 ± 0.34) × 10−10 cm3 molecule−1 s−1, where the quoted uncertainties are a combination of the 1σ standard errors in the kinetic data and the systematic experimental errors. The surprisingly slow reaction between FeO+ and O is examined using ab initio quantum calculations of the relevant potential energy surfaces. The importance of this reaction for controlling the lifetime of sporadic E layers is then demonstrated using a model of the upper mesosphere and lower thermosphere.

Graphical abstract: A kinetic study of the reactions FeO+ + O, Fe+·N2 + O, Fe+·O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere

Article information

Article type
Paper
Submitted
21 Dec 2005
Accepted
13 Feb 2006
First published
06 Mar 2006

Phys. Chem. Chem. Phys., 2006,8, 1812-1821

A kinetic study of the reactions FeO+ + O, Fe+·N2 + O, Fe+·O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere

K. R. S. Woodcock, T. Vondrak, S. R. Meech and J. M. C. Plane, Phys. Chem. Chem. Phys., 2006, 8, 1812 DOI: 10.1039/B518155K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements