Issue 38, 2005

Vinyl ether-modified poly(hydrogen silsesquioxanes) as dielectric materials

Abstract

Vinyl ether-modified poly(hydrogen silsesquioxanes) or PHSQ were prepared via a platinum-catalyzed hydrosilylation reaction of PHSQ with an alkyl vinyl ether (VE) in toluene. The product formed in a near quantitative yield and its composition was characterized by multinuclear magnetic resonance spectroscopy. Multi-detector size exclusion chromatography revealed that relative to the PHSQ starting material, the PHSQ–VEs increased in molecular weight and radius of gyration, and the relationship between intrinsic viscosity and molecular weight suggested a branched structure. Thermal analyses indicated a cure onset around 100 °C; an onset of thermal decomposition at ca. 230 °C; and mass loss completed by 550 °C. Evolved gas analysis from thermogravimetric experiments revealed the initial elimination of the ethylene linkage, followed by cleavage of the carbon–carbon bonds. The materials prepared by pyrolysis at 425 °C were porous. Nitrogen porosimetry measured an increase in microporosity—from 0.187 to 0.295 cm3 g−1 (<5 nm)—when the VE content was increased from 10 to 50 wt%. The PHSQ–VEs were spin-coated onto silicon wafers and cured either at 400, 425, or 450 °C. The dielectric constant of the spin-coated films ranged from 2.3 to 3.0, and the modulus was between 2.2 and 12.9 GPa depending on material composition.

Graphical abstract: Vinyl ether-modified poly(hydrogen silsesquioxanes) as dielectric materials

Article information

Article type
Paper
Submitted
13 Sep 2004
Accepted
14 Jul 2005
First published
15 Aug 2005

J. Mater. Chem., 2005,15, 4115-4124

Vinyl ether-modified poly(hydrogen silsesquioxanes) as dielectric materials

K. Su, D. R. Bujalski, K. Eguchi, G. V. Gordon, S. Hu and D. Ou, J. Mater. Chem., 2005, 15, 4115 DOI: 10.1039/B414064H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements