Volume 128, 2005

Polyelectrolyte–surfactant complex: phases of self-assembled structures

Abstract

We study the structure of complexes formed between ionic surfactants (SF) and a single oppositely charged polyelectrolyte (PE) chain. For our computer simulation we use the “primitive” electrolyte model: while the polyelectrolyte is modeled by a tethered chain of charged hard sphere beads, the surfactant molecules consist of a single charged head bead tethered to a tail of tethered hard spheres. A hydrophobic attraction between the tail beads is introduced by assuming a Lennard-Jones potential outside the hard-sphere diameter. As a function of the strengths of both the electrostatic and the hydrophobic interactions, we find the following scenario: switching on and increasing the electrostatic forces first leads to a stretching of the PE and then by condensation of SF to the formation of a complex. For vanishing hydrophobic forces this complex has the architecture of a molecular bottle-brush cylindrically centered around the stretched PE molecule. Upon increasing the hydrophobic attraction between the SF tails, a transition occurs inverting this structure to a spherical micelle with a neutral core of SF tails and a charged corona of SF heads with the PE molecule wrapped around. At intermediate hydrophobicity there is a competition between the two structures indicated by a non-monotonic dependence of the shape as function of the Coulomb strength, favoring the cylindrical shape for weak and the spherical micellar complex for strong interaction.

Article information

Article type
Paper
Submitted
29 Mar 2004
Accepted
28 Apr 2004
First published
27 Sep 2004

Faraday Discuss., 2005,128, 389-405

Polyelectrolyte–surfactant complex: phases of self-assembled structures

C. von Ferber and H. Löwen, Faraday Discuss., 2005, 128, 389 DOI: 10.1039/B404677C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements