Issue 10, 2005

Studies of oxalate-bridged MM quadruple bonds and their radical cations (M = Mo or W): on the matter of linkage isomers

Abstract

Electronic structure calculations employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been carried out on the model complexes {[(HCO2)3M2]2(μ-O2CCO2)}0/+ (M = Mo or W) in D2h symmetry, where the oxalate bridge forms either five- or six-membered rings with the M2 centres; the complexes are hereafter referred to as μ(5,5)0/+ and μ(6,6)0/+, respectively. The calculations predict that the neutral complexes should exist as the μ(5,5) linkage isomer, while the radical cations favour the μ(6,6) isomer by ca. 4–6 kJ mol−1. For the μ(5,5) isomers, the rotational barriers about the oxalate C–C bond have been calculated to be 15.9 and 27.2 kJ mol−1 for M = Mo and W, respectively. For the cationic μ(5,5)+ isomers the barrier is higher, being 36.8 and 50.6 kJ mol−1 for M = Mo and W, respectively. The calculated Raman and visible near-IR spectra for the μ(5,5)0/+ and μ(6,6)0/+ are compared with experimental data obtained for the {[(tBuCO2)3M2]2(μ-O2CCO2)}0/+ complexes, hereafter referred to as M4OXA0/+ (M = Mo or W). The experimental data more closely correlate with that calculated for the μ(5,5)0/+ linkage isomers, and the 13C-NMR spectrum of the mixed metal complex Mo2W2OXA indicates the presence of the 5-membered oxalate-bridged species (JCC = 100 Hz).

Graphical abstract: Studies of oxalate-bridged MM quadruple bonds and their radical cations (M = Mo or W): on the matter of linkage isomers

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2005
Accepted
23 Mar 2005
First published
15 Apr 2005

Dalton Trans., 2005, 1852-1857

Studies of oxalate-bridged MM quadruple bonds and their radical cations (M = Mo or W): on the matter of linkage isomers

M. H. Chisholm, J. S. D'Acchioli, C. M. Hadad and N. J. Patmore, Dalton Trans., 2005, 1852 DOI: 10.1039/B501938A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements