Issue 7, 2005

Ion/surface reactions and ion soft-landing

Abstract

Ion/surface collision phenomena in the hyperthermal collision energy regime (1–100 eV) are reviewed, with emphasis on chemical processes associated with the impact of small organic and biological ions at functionalized self-assembled monolayer surfaces. Inelastic collisions can lead to excitation of the projectile ion and can result in fragmentation, a process known as surface-induced dissociation which is useful in chemical analysis using tandem mass spectrometry. Changes in charge can accompany ion/surface collisions and those associated with a change in polarity (positive to negative ions or vice versa) are an attractive method for ion structural characterization and isomer differentiation. The surface-induced charge inversion of nitrobenzene and other substituted aromatics is discussed. Reactive collisions occurring between gaseous ions and surfaces depend on the chemical nature of the collision partners. These reactions can be used for selected chemical modifications of surfaces as well as for surface analysis. Particular emphasis is given here to ion soft-landing, another type of ion/surface interaction, in which the projectile ion is landed intact at the surface, either as the corresponding neutral molecule or, interestingly but less commonly, in the form of the ion itself. The ion soft-landing experiment allows for preparative mass spectrometry; for example the preparation of pure biological compounds by using the mass spectrometer as a separation device. After separation, the mass-selected ions are collected by soft-landing, at different spatial points in an array. If the experiment is performed using a suitable liquid medium, in the case of some proteins at least, biological activity is retained.

Graphical abstract: Ion/surface reactions and ion soft-landing

Article information

Article type
Review Article
Submitted
30 Nov 2004
Accepted
19 Jan 2005
First published
08 Feb 2005

Phys. Chem. Chem. Phys., 2005,7, 1490-1500

Ion/surface reactions and ion soft-landing

B. Gologan, J. R. Green, J. Alvarez, J. Laskin and R. Graham Cooks, Phys. Chem. Chem. Phys., 2005, 7, 1490 DOI: 10.1039/B418056A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements