Jump to main content
Jump to site search

Issue 7, 2005
Previous Article Next Article

Continuous particle separation in a microchannel having asymmetrically arranged multiple branches

Author affiliations

Abstract

A new method for continuous size separation and collection of particles in microfabricated devices, asymmetric pinched flow fractionation (AsPFF), has been proposed and demonstrated. This method improves the separation scheme of pinched flow fractionation (PFF), which utilizes a laminar flow profile inside a microchannel. In this study, multiple branch channels with different channel dimensions were arranged at the end of the pinched segment, so that the flow rate distributions to each branch channel were varied, and a large part of the liquid was forced to go through one branch channel (drain channel). In the proposed channel system, the flow profile inside the microchannel was asymmetrically amplified, enabling the separation of one-order smaller particles compared with PFF. After introducing the method, we examined the effect of the asymmetric amplification by controlling the outlet of the drain channel. Also, a mixture of 1.0 ∼5.0 µm particles was separated, and erythrocytes were successfully separated from blood. The results indicate that the AsPFF method could be applied to the separation of much smaller-size particles, since more precise separation can be achieved simply by changing the geometries of branch channels.

Graphical abstract: Continuous particle separation in a microchannel having asymmetrically arranged multiple branches

Back to tab navigation

Publication details

The article was received on 02 Feb 2005, accepted on 27 Apr 2005 and first published on 19 May 2005


Article type: Paper
DOI: 10.1039/B501885D
Lab Chip, 2005,5, 778-784

  •   Request permissions

    Continuous particle separation in a microchannel having asymmetrically arranged multiple branches

    J. Takagi, M. Yamada, M. Yasuda and M. Seki, Lab Chip, 2005, 5, 778
    DOI: 10.1039/B501885D

Search articles by author

Spotlight

Advertisements