Volume 130, 2005

Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study

Abstract

A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don’t know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the α-pinene + ozone are highly sensitive to NOx, and that SOA yields from β-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.

Article information

Article type
Paper
Submitted
16 Nov 2004
Accepted
14 Feb 2005
First published
17 May 2005

Faraday Discuss., 2005,130, 295-309

Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study

N. M. Donahue, K. E. Huff Hartz, B. Chuong, A. A. Presto, C. O. Stanier, T. Rosenhørn, A. L. Robinson and S. N. Pandis, Faraday Discuss., 2005, 130, 295 DOI: 10.1039/B417369D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements