Some C2v symmetric cyclopenta[2,1-b;3,4-b′]bithiophenes differently substituted at the 4 position with a calix[4]arene group were synthesized and electrochemically polymerized by anodic coupling. The polymers were characterized by cyclic voltammetry, UV-vis and FTIR spectroscopy. Quartz crystal microbalance analysis showed strong affinity and selectivity of the polymers for toluene and acetone from the gas phase. The absorption process associated with the calix unit was satisfactorily described through a Langmuir isotherm, while a very small linear contribution was given by the polythiophene backbone. The absorption capacity of these materials was found to be higher by a magnitude of three orders than those displayed by cyclopentabithiophene-based polymers devoid of the calix unit, thus supplying strong, though indirect, proof of the role played by the calix units in the absorption process.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?