Volume 126, 2004

Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy

Abstract

Raman spectroscopy is used as a probe of ultrastructural (molecular) changes in both the mineral and matrix (protein and glycoprotein, predominantly type I collagen) components in real time of murine cortical bone as it responds to elastic deformation. Because bone is a composite material, its mechanical properties are dependent on the structure and composition at a variety of dimensional scales. At the ultrastructural level, crystal structure and protein secondary structure distort as the tissue is loaded. These structural changes are followed as perturbations to tissue spectra. We load murine femora in a custom-made mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. As the specimen is loaded in tension, the shifts in mineral P–O4ν1 are followed with the microprobe. Average load and strain are measured using a load cell. These devices ensure that specimens are not loaded to or beyond the yield point. Changes occur in the mineral component of bone as a response to loading in the elastic regime. We propose that the mineral apatitic crystal lattice is deformed by movement of calcium and other ions. Raman microspectroscopy shows that bone mineral is not a passive contributor to tissue strength. The mineral active response to loading may function as a local energy storage and dissipation mechanism, thus helping to protect tissue from catastrophic damage.

Article information

Article type
Paper
Submitted
02 May 2003
Accepted
07 Jul 2003
First published
03 Nov 2003

Faraday Discuss., 2004,126, 159-168

Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy

M. D. Morris, W. F. Finney, R. M. Rajachar and D. H. Kohn, Faraday Discuss., 2004, 126, 159 DOI: 10.1039/B304905A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements