Issue 21, 2004

Ab initio calculations of coupled potential energy surfaces for the Cl(2P3/2,2P1/2) + H2 reaction

Abstract

Three-dimensional potential energy surfaces for the entrance channel of the title reaction have been computed using accurate multi-reference configuration wavefunctions and a very large basis set. The three adiabatic potential surfaces correlating asymptotically with Cl(2P) + H2 (2Σ+ and 2Π for collinear geometries) have been transformed to a diabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin–orbit coupling surfaces have been computed using the Breit–Pauli Hamiltonian. The six resulting potentials (four electrostatic and two spin–orbit) have been fitted to analytical functions. The diabatic 2Π potential has a minimum in the entrance channel at collinear geometries, while the diabatic 2Σ potential has a well for a T-shaped (C2v) structure. This different anisotropy leads to a conical intersection of the two 2A′ (2Σ+, 2Π) adiabatic potentials at intermediate H2–Cl distances. The adiabatic spin–orbit potentials, which correlate asymptotically with Cl(2P1/2,3/2) + H2 are obtained by diagonalizing the full electrostatic + spin–orbit Hamiltonian. Spin–orbit coupling increases the adiabatic barrier height by 0.84 kcal mol−1. Implications for the non-adiabatic reaction dynamics are discussed.

Article information

Article type
Paper
Submitted
26 Jul 2004
Accepted
16 Sep 2004
First published
13 Oct 2004

Phys. Chem. Chem. Phys., 2004,6, 4975-4983

Ab initio calculations of coupled potential energy surfaces for the Cl(2P3/2,2P1/2) + H2 reaction

G. Capecchi and H. Werner, Phys. Chem. Chem. Phys., 2004, 6, 4975 DOI: 10.1039/B411385C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements