Issue 18, 2004

The visible luminescent characteristics of ZnO supported on SiO2 powder

Abstract

In situ laser-induced luminescence spectroscopy is used to study the visible luminescent characteristics of ZnO during the preparation process of ZnO supported on SiO2 by the pyrolysis of different Zn precursors in N2 or O2 atmosphere. The excitation source is 325 nm light, which is above the band gap (3.37 eV) of ZnO. In N2 atmosphere, it is shown that green (centered at ca. 520 nm), yellow (centered at ca. 580 nm) and orange (centered at ca. 640 nm) luminescence bands appear for ZnO produced from zinc acetate, zinc hydroxide and zinc nitrate, respectively. After these samples are treated by O2, green band is changed into yellow band and yellow band is changed into orange band. On the other hand, it is also found that the laser irradiation on the sample could alter the luminescent behavior of ZnO produced at the beginning decomposition temperature of the Zn precursors. While this sample is irradiated, the orange band is gradually changed to a yellow band, the luminescent intensity finally increases more than 30 times that at the beginning of irradiation. However, irradiation hardly affects the luminescent properties of ZnO after calcination above 160 °C. The results indicate that the visible luminescence from ZnO is associated with the oxygen vacancies in ZnO, and the electronic state levels responsible for the visible luminescence bands are changing with the density of oxygen vacancies in ZnO. The green, yellow and orange bands are ascribed to the state of ZnO with high density of oxygen vacancies, with moderate density of oxygen vacancies and with less oxygen vacancies, respectively.

Article information

Article type
Paper
Submitted
25 May 2004
Accepted
13 Jul 2004
First published
03 Aug 2004

Phys. Chem. Chem. Phys., 2004,6, 4473-4479

The visible luminescent characteristics of ZnO supported on SiO2 powder

J. Chen, Z. Feng, P. Ying, M. Li, B. Han and C. Li, Phys. Chem. Chem. Phys., 2004, 6, 4473 DOI: 10.1039/B407913B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements