An ab initio and DFT study of the fragmentation and isomerisation of MeP(O)(OMe)+
Abstract
The fragmentation behaviour of the ion MeP(O)OMe+ has been investigated using quantum mechanical calculations at the B3LYP and MP2 levels to support experiments made with an Ion Trap Mass Spectrometer. Two mechanisms for the loss of CH2O are found, one involving a 1,3-H migration to phosphorus and the other a 1,2-methyl migration to give P(OMe)2+ followed by a 1,3-H migration. In each case an ion-dipole complex is formed that rapidly dissociates to yield CH2O. The relative importance of each route has been previously determined experimentally via