Issue 6, 2004

A concept for G proteinactivation by G protein-coupled receptor dimers: the transducin/rhodopsin interface

Abstract

G protein-coupled receptors (GPCRs) are ubiquitous and essential in modulating virtually all physiological processes. These receptors share a similar structural design consisting of the seven-transmembrane α-helical segments. The active conformations of the receptors are stabilized by an agonist and couple to structurally highly conserved heterotrimeric G proteins. One of the most important unanswered questions is how GPCRs couple to their cognate G proteins. Phototransduction represents an excellent model system for understanding G protein signaling, owing to the high expression of rhodopsin in rod photoreceptors and the multidisciplinary experimental approaches used to study this GPCR. Here, we describe how a G protein (transducin) docks on to an oligomeric GPCR (rhodopsin), revealing structural details of this critical interface in the signal transduction process. This conceptual model takes into account recent structural information on the receptor and G protein, as well as oligomeric states of GPCRs.

Graphical abstract: A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface

Article information

Article type
Paper
Submitted
04 Dec 2003
Accepted
04 Feb 2004
First published
27 Feb 2004

Photochem. Photobiol. Sci., 2004,3, 628-638

A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface

S. Filipek, K. A. Krzysko, D. Fotiadis, Y. Liang, D. A. Saperstein, A. Engel and K. Palczewski, Photochem. Photobiol. Sci., 2004, 3, 628 DOI: 10.1039/B315661C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements