Jump to main content
Jump to site search

Issue 20, 2004
Previous Article Next Article

Structure and phase transition of Sn-substituted Zr(1−x)SnxW2O8

Author affiliations


A conventional solid state reaction between ZrO2, SnO2 and WO3 was used to prepare the negative thermal expansion material Zr(1−x)SnxW2O8. The strong negative thermal expansion over a broad temperature range, which is well known for the pure zirconium tungstate compound, is also demonstrated in this substituted material. However, the order–disorder phase transition of the cubic materials was shown to shift towards lower temperatures, dependent on the degree of Sn4+-substitution, by dilatometry and temperature variable X-ray diffraction. This is attributed to the lower bond strength of the Sn–O bond in comparison to the Zr–O bond. The unit cell parameters of the material are significantly smaller due to the insertion of smaller Sn4+-cations on the Zr4+-position in the structure. For one composition (x = 0.3), the structure of Zr(1−x)SnxW2O8 was studied by neutron diffraction at two temperatures, 293 K and 473 K, corresponding to respectively the low temperature α-, and high temperature β-polymorph of Zr(1−x)SnxW2O8. The refined structures were found to be similar to that of ZrW2O8 at the same temperatures. Variable temperature X-ray diffraction of the same sample was used to establish the phase transition temperature, by refining the fractional occupancy of the possible tungstate orientations with temperature.

Graphical abstract: Structure and phase transition of Sn-substituted Zr(1−x)SnxW2O8

Back to tab navigation

Publication details

The article was received on 24 May 2004, accepted on 15 Jul 2004 and first published on 18 Aug 2004

Article type: Paper
DOI: 10.1039/B407851A
J. Mater. Chem., 2004,14, 2988-2994

  •   Request permissions

    Structure and phase transition of Sn-substituted Zr(1−x)SnxW2O8

    C. De Meyer, F. Bouree, J. S. O. Evans, K. De Buysser, E. Bruneel, I. Van Driessche and S. Hoste, J. Mater. Chem., 2004, 14, 2988
    DOI: 10.1039/B407851A

Search articles by author