Issue 21, 2004

Nickel(iii) oxidation of its glycylglycylhistamine complex

Abstract

The doubly-deprotonated Ni(III) complex of Gly2Ha (where Ha is histamine) undergoes base-assisted oxidative self-decomposition of the peptide. At ≤ p[H+] 7.0, a major pathway is a two-electron oxidation at the α-carbon of the N-terminal glycyl residue. Major products (up to 73%) of this two-electron oxidation are glyoxylglycylhistamine and ammonia. Glyoxylglycylhistamine will decay to give isocyanatoacetylhistamine and formaldehyde. Two-electron oxidations of the second glycyl and histamine residues occur as minor pathways (12% of the total possible reaction). Above p[H+] 8.5, two Ni(III)–peptide complexes form an oxo bridge in the axial positions to give a reactive dimer species. This proximity allows the resulting Ni(II)–peptide radical intermediates to undergo peptide–peptide cross-linking at the N-terminal glycyl residues. The products found below p[H+] 7.0 are observed above p[H+] 8.5 as well, although in lower yields. In contrast to this work, NiIII(H−2Gly2HisGly) undergoes a four-electron oxidation at the N-terminal glycyl residue. Oxidation at the internal glycyl and histidyl residues are not observed. The reactivity of NiIII(H−2Gly2Ha)+ is also different than CuIII(H−2Gly2Ha)+, which undergoes a two-electron oxidation at the histamine group with no peptide–peptide cross-linking in basic solution.

Graphical abstract: Nickel(iii) oxidation of its glycylglycylhistamine complex

Article information

Article type
Paper
Submitted
30 Jun 2004
Accepted
02 Sep 2004
First published
20 Sep 2004

Dalton Trans., 2004, 3508-3514

Nickel(III) oxidation of its glycylglycylhistamine complex

B. J. Green, T. M. Tesfai and D. W. Margerum, Dalton Trans., 2004, 3508 DOI: 10.1039/B409929J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements