Jump to main content
Jump to site search

Issue 8, 2004
Previous Article Next Article

Electrospray ionization mass spectrometry fingerprinting of propolis

Author affiliations

Abstract

Crude ethanolic extracts of propolis, a natural resin, have been directly analysed using electrospray ionization mass (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) in the negative ion mode. European, North American and African samples have been analyzed, but emphasis has been given to Brazilian propolis which displays diverse and region-dependent chemical composition. ESI-MS provides characteristic fingerprint mass spectra, with propolis samples being divided into well-defined groups directly related to their geographical origins. Chemometric multivariate analysis statistically demonstrates the reliability of the ESI-MS fingerprinting method for propolis. On-line ESI-MS/MS tandem mass spectrometry of characteristic [M − H] ion markers provides an additional dimension of fingerprinting selectivity, while structurally characterizing the ESI-MS marker components of propolis. By comparison with standards, eight such markers have been identified: para-coumaric acid, 3-methoxy-4-hydroxycinnamaldehyde, 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran, 3-prenyl-4-hydroxycinnamic acid, chrysin, pinocembrin, 3,5-diprenyl-4-hydroxycinnamic acid and dicaffeoylquinic acid. The negative mode ESI-MS fingerprinting method is capable of discerning distinct composition patterns to typify, to screen the sample origin and to reveal characteristic details of the more polar and acidic chemical components of propolis samples from different regions of the world.

Back to tab navigation

Article information


Submitted
12 Mar 2004
Accepted
12 May 2004
First published
21 Jun 2004

Analyst, 2004,129, 739-744
Article type
Paper

Electrospray ionization mass spectrometry fingerprinting of propolis

A. C. H. F. Sawaya, D. M. Tomazela, I. B. S. Cunha, V. S. Bankova, M. C. Marcucci, A. R. Custodio and M. N. Eberlin, Analyst, 2004, 129, 739
DOI: 10.1039/B403873H

Social activity

Search articles by author

Spotlight

Advertisements