Issue 4, 2004

Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin

Abstract

Redox functionalized microstructures of diacetylene lipids containing cell surface ligand GM1 have been prepared for the construction of an electrochemical biosensor for cholera toxin from Vibrio cholerae. Incorporation of lipid molecules with disulfide functionality into the microstructures allows for firm attachment of the microstructures on a gold surface to form a sensing interface. The observed morphology of the microstructures is platelet, with size around 240 nm as determined by dynamic light scattering and transmission electron microscopy. The electrochemical response stems from electron transfer between the electrode and the redox sites on the microstructures, and the Faradaic current is influenced by the binding events of protein toxins to the ligands displayed on the crystalline surface. Electrochemical characterization indicates that electron transfer of surface ferrocene on the gold electrode is facile. Differential pulse voltammetry was used to measure the current magnitude as a function of toxin concentration, and a working range expanding from 1.0 × 10−8 to 5.0 × 10−7 M was obtained. Bovine serum albumin (BSA) was used as a control agent with which no interference to Faradaic response was found in the same concentration range. Atomic force microscopy (AFM) was used to characterize the morphology and distribution of microstructures on the gold surface. The effectiveness of the design for bypassing surface fouling of proteins in electrochemical detection has been demonstrated, and a binding regulated electron hopping mechanism for the observed electrochemical behavior has been proposed.

Article information

Article type
Paper
Submitted
03 Dec 2003
Accepted
16 Feb 2004
First published
15 Mar 2004

Analyst, 2004,129, 309-314

Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin

Q. Cheng, S. Zhu, J. Song and N. Zhang, Analyst, 2004, 129, 309 DOI: 10.1039/B315656G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements