Issue 9, 2003

Metal oxide encapsulated nanoparticles

Abstract

Atomistic computer simulation techniques have been employed to generate a model for a 25 nm3 CaO nanoparticle, encapsulated within the near surface region of an MgO lattice. We find that the ‘internal’ morphology of the resulting encapsulated CaO nanoparticle is ‘pseudo-spherical’ and exhibits {100}, {110} and {111} facets. The encapsulated nanoparticle suffers significant structural changes in comparison to the bulk parent oxide: Regions within the CaO nanoparticle are identified to suffer both tension and compression together with plane curvature. In addition a wealth of defects (isolated vacancies, interstitials and substitutionals including complex clustering) evolve within the near (1–2 atomic planes) interfacial regions of the CaO nanoparticle and surrounding MgO lattice. The CaO nanoparticle is observed to lie epitaxially with respect to the host MgO lattice with CaO{100} and MgO{100} planes aligned; dislocations evolve to accommodate the +13% bulk lattice misfit associated with the system, the core structures of which are localised at regions of poor registry between the {100} planes. The CaO nanoparticle is observed to rotate by about 6° with respect to the encapsulating MgO matrix, which results in some anisotropy in structure. Comprehensive depictions of the atomistic structure and morphology of the encapsulated CaO nanoparticle and surrounding MgO lattice are presented using molecular graphical techniques.

Graphical abstract: Metal oxide encapsulated nanoparticles

Article information

Article type
Paper
Submitted
30 May 2003
Accepted
17 Jul 2003
First published
05 Aug 2003

J. Mater. Chem., 2003,13, 2078-2089

Metal oxide encapsulated nanoparticles

D. C. Sayle, J. A. Doig, S. C. Parker and G. W. Watson, J. Mater. Chem., 2003, 13, 2078 DOI: 10.1039/B306154J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements