Volume 123, 2003

Colloidal epitaxy: Playing with the boundary conditions of colloidal crystallization

Abstract

We have studied, with quantitative confocal microscopy, epitaxial colloidal crystal growth of particles interacting with an almost hard-sphere (HS) potential in a gravitational field and density matched colloids interacting with a long-range (LR) repulsive potential with a body-centred cubic (BCC) equilibrium crystal phase. We show that in both cases it is possible to grow thick, stacking fault-free metastable crystals: close-packed crystals with any stacking sequence, including hexagonal close packed (HCP), for the HS particles and face-centred cubic (FCC) in the case of the LR colloids. In accordance with recent computer simulations done for HS particles it was found that the optimal lattice constant to grow HS HCP crystals was larger than that of equilibrium FCC crystals. In addition, because of the absence of gravity, pre-freezing could be observed for the particles with the LR potential on a template of charged lines. We also argue that the ability to manipulate colloids with highly focused light, optical traps or tweezers, will become an important tool in both the study of colloidal crystallization and in making new structures. We show how cheap 2D and 3D templates can be made with optical tweezers and demonstrate, in proof of principle experiments with core–shell colloids, how light fields can generate crystal nuclei and other structures in the bulk of concentrated dispersions and how the effect of these structures on the rest of a dispersion can be studied quantitatively in 3D.

Article information

Article type
Paper
Submitted
29 May 2002
Accepted
07 Jun 2002
First published
20 Nov 2002

Faraday Discuss., 2003,123, 107-119

Colloidal epitaxy: Playing with the boundary conditions of colloidal crystallization

A. van Blaaderen, J. P. Hoogenboom, D. L. J. Vossen, A. Yethiraj, A. van der Horst, K. Visscher and M. Dogterom, Faraday Discuss., 2003, 123, 107 DOI: 10.1039/B205203B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements