Issue 2, 2003

Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling

Abstract

We have summarized the molecular and cellular events involved in nickel (Ni) compound induced carcinogenesis. The major hypothesis for nickel carcinogenic action has involved the ability of the Ni compound to deliver high concentrations of Ni intracellularly, enter the nucleus and interact with chromatin. Ni has been found to selectively damage heterochromatin, and a major action of Ni is its ability to silence the expression of genes located near heterochromatin by inducing a loss of histone H4 and H3 acetylation and DNA hypermethylation. When Ni silences critical genes, such as tumor suppressor genes, the cell is altered to a greater state of neoplastic transformation. The carcinogenic hazard of Ni compounds has been directly related to the ability of that Ni compound to raise the intracellular Ni ions. The mechanisms of Ni-induced gene silencing will be discussed. However, recently it has been found that soluble Ni ions can interact with the cell surface receptors and activate cell signaling resulting in the induction of a variety of cellular genes. In particular, the Ca and hypoxia inducible factor pathway is activated in all cells exposed to soluble Ni ions. In the case of HIF-1 induction, a cell is now equipped with the expression of a variety of genes that will allow the cell to survive the lack of oxygen and thus should enable a previously initiated cancer cell to progress into a full malignant state and metastasize. These new findings support the view that soluble Ni ions exhibit carcinogenic potential by activating cell promotion and lend strength to the epidemiological data showing soluble Ni to be associated with cancer risk in Ni refinery workers.

Article information

Article type
Perspective
Submitted
18 Oct 2002
Accepted
31 Jan 2003
First published
26 Feb 2003

J. Environ. Monit., 2003,5, 222-223

Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling

M. Costa, Y. Yan, D. Zhao and K. Salnikow, J. Environ. Monit., 2003, 5, 222 DOI: 10.1039/B210260A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements