Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2003

Selective silver ion transfer voltammetry at the polarised liquid|liquid interface

Author affiliations

Abstract

Transfer of silver ions across the water|1,2-dichloroethane interface was studied by cyclic voltammetry (CV). In the absence of added neutral ionophore, Ag+ transferred across the interface when the organic phase contained either tetraphenylborate or tetrakis(4-chloro)phenylborate anions, but this transfer was not possible in the presence of organic phase hexafluorophosphate or perchlorate anions. The ion transfer processes observed were independent of the nature of the organic phase cation. The CV in the presence of tetraphenylborate exhibited a shape consistent with an ion transfer followed by chemical reaction; the rate constant for the following chemical reaction was 0.016 sāˆ’1. In the presence of tetrakis(4-chloro)phenylborate, a return peak equivalent in magnitude to the forward peak was observed, indicative of a simple ion transfer reaction uncomplicated by accompanying chemical reactions. The selectivity of the transfer was assessed with respect to other metal cations: no transfers for copper, cadmium, lead, bismuth, cobalt, nickel, palladium or zinc were observed. The selectivity of the transfer suggests this can form the basis of a selective voltammetric methodology for the determination of silver ions.

Article information


Submitted
17 Feb 2003
Accepted
09 Jul 2003
First published
24 Jul 2003

Analyst, 2003,128, 1187-1192
Article type
Paper

Selective silver ion transfer voltammetry at the polarised liquid|liquid interface

A. Sherburn, M. Platt, D. W. M. Arrigan, N. M. Boag and R. A. W. Dryfe, Analyst, 2003, 128, 1187 DOI: 10.1039/B301832F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements