Issue 5, 2002

Photosensitization of DNA damage by glycated proteins

Abstract

Photosensitized DNA damage in skin is thought to be an important mechanism of UV phototoxicity. Here we demonstrate that proteins modified by advanced glycation endproducts (AGE-proteins) are photosensitizers of DNA damage and show that multiple mechanisms are involved in AGE-sensitization. AGE-chromophores accumulate on long-lived skin proteins such as collagen and elastin as a consequence of glycation, the spontaneous amino-carbonyl reaction of protein-bound lysine and arginine residues with reactive carbonyl species. AGE-proteins accumulate in both the nucleus and the cytoplasm of mammalian cells. To test the hypothesis that protein-bound AGEs in close proximity to DNA are potent UV-photosensitizers, a simple plasmid DNA cleavage assay was established. Irradiation of supercoiled ΦX 174 DNA with solar simulated light in the presence of AGE-modified bovine serum albumin or AGE-modified RNAse A induced DNA single strand breaks. The sensitization potency of the glycated protein correlated with increased AGE-modification and the unmodified protein displayed no photosensitizing activity. AGE-sensitized formation of reactive oxygen species was not fully responsible for the observed DNA damage and other mechanisms such as direct electron transfer interaction between photoexcited AGE and DNA are likely to be involved. Glycated proteins in skin may equally function as potent photosensitizers of DNA damage with implications for photoaging and photocarcinogenesis.

Graphical abstract: Photosensitization of DNA damage by glycated proteins

Article information

Article type
Paper
Submitted
18 Mar 2002
Accepted
05 Apr 2002
First published
25 Apr 2002

Photochem. Photobiol. Sci., 2002,1, 355-363

Photosensitization of DNA damage by glycated proteins

G. T. Wondrak, E. L. Jacobson and M. K. Jacobson, Photochem. Photobiol. Sci., 2002, 1, 355 DOI: 10.1039/B202732C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements