Jump to main content
Jump to site search

Issue 21, 2002
Previous Article Next Article

Temperature gradients and frictional energy dissipation in the sliding of hydroxylated α-alumina surfaces

Author affiliations


The dynamics of friction and energy dissipation of a small nanoscale hydroxylated alumina surface sliding across a large identical surface were investigated by molecular dynamics (MD) simulations. The energy released into both the sliding and stationary surfaces and the energy transfer from the sliding interface to the bulk were investigated by monitoring the temperature of the surfaces and their sublayers. Steady state temperature gradients are found for the sublayers of each surface as a result of the balance between the heat released from the sliding friction and heat transfer to the bulk. The MD simulations show periodic friction energy release from the interface to the surfaces, giving rise to periodic changes in the temperature of the surface sublayers. This temperature depends on the sliding velocity. The periodicity in the friction energy release arises from the periodic unit cell structures of the surfaces. Atomic-level vibrational motions and interdigitation of the surface atoms give rise to the frictional energy of the sliding surfaces. Velocity distributions are determined for atoms within different surface layers and they become more Boltzmann-like the further the layers are from the interface and if the sliding is fast and not in the stick–slip regime. Tribological properties for continuous sliding across the same regime of the bottom surface, by using periodic boundary conditions, differ from those for sliding across a large bottom surface.

Back to tab navigation

Publication details

The article was received on 15 May 2002, accepted on 27 Aug 2002 and first published on 20 Sep 2002

Article type: Paper
DOI: 10.1039/B204698A
Citation: Phys. Chem. Chem. Phys., 2002,4, 5377-5385
  •   Request permissions

    Temperature gradients and frictional energy dissipation in the sliding of hydroxylated α-alumina surfaces

    H. Xie, K. Song, D. J. Mann and W. L. Hase, Phys. Chem. Chem. Phys., 2002, 4, 5377
    DOI: 10.1039/B204698A

Search articles by author