Electrochemically active species and multielectron processes in ionic melts
Abstract
The model concepts for the mechanisms of formation of electrochemically active species and multielectron processes in ionic nitrate-, carbonate-, boron- and titanium-containing fluoride melts are generalised. The fundamental importance of the acid-base properties of a melt in the mechanism of formation of electrochemically active species is shown for nitrate- and carbonate-containing melts. This fact is confirmed by electrochemical measurements and by calculations of force constants for oxyanions. The optimum form of electrochemically active species has been established; their reduction abilities depend on the cationic composition of a melt, the adsorption properties of the electrode surface and the electric field strength. The bibliography includes 218 references.
Please wait while we load your content...