Issue 7, 2001

Bond shift and charge transfer dynamics in methylene- and dimethylsilyl-bridged dicyclooctatetraene dianions

Abstract

The rate constants for bond shift in dicyclooctatetraenylmethane (1), dicyclooctatetraenyldimethylsilane (2), and their dianions (12− and 22−) in [2H8]THF, have been determined from the temperature dependence of their 13C NMR linewidths. The corresponding parameters for intramolecular electron and cation transfer (charge transfer) between the dinegative and neutral rings have been measured by 13C NMR spin saturation transfer experiments for the dipotassium salts of 1 and 2. Selected structural features of the neutral compounds and the dianions are discussed on the basis of 13C NMR chemical shifts and ab initio molecular orbital calculations at the HF/6-31G* and HF/3-21G(*) levels of theory. Energy contributions to the ring flattening in the bond shift process are calculated by molecular mechanics methods. The measured rate constants for both bond shift and charge transfer are larger for the methylene-bridged dianion. Approximately half of this difference is due to the greater ease of “gating” (i.e., ring flattening and distortion to the bond shift transition state) in 12−–2K+. A significant portion of the remainder is attributed to a greater inter-ring through-space interaction in 12−, although mediation by the cation and/or through-bridge interactions probably also contribute to some extent. A temperature-dependent differential 13C NMR line broadening is observed for the dianion ring carbons of the dipotassium salts. Possible mechanisms for this counterion-specific line broadening, which occurs only for carbons with large HOMO coefficients, are discussed.

Graphical abstract: Bond shift and charge transfer dynamics in methylene- and dimethylsilyl-bridged dicyclooctatetraene dianions

Article information

Article type
Paper
Submitted
29 Jan 2001
Accepted
27 Apr 2001
First published
29 May 2001

J. Chem. Soc., Perkin Trans. 2, 2001, 1130-1138

Bond shift and charge transfer dynamics in methylene- and dimethylsilyl-bridged dicyclooctatetraene dianions

P. Boman, B. Eliasson, R. A. Grimm and S. W. Staley, J. Chem. Soc., Perkin Trans. 2, 2001, 1130 DOI: 10.1039/B101025P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements