Issue 2, 2001


Ce1 − xZrxO2 solid solutions are produced continuously by hydrolysis of mixtures of cerium ammonium nitrate and zirconium acetate in near-critical water at ca. 300 °C and 25 MPa using a flow reactor. Rapid hydrothermal coprecipitation leads to nano-particulate Ce1 − xZrxO2 (x = 0–1), the composition of which is largely determined by the initial relative concentrations of Ce4+ and Zr4+ ions in the starting solution. The freshly prepared materials are crystalline, possess very small particle sizes, and have high surface areas. The effects of calcining the products in air at high temperature have been studied. Apart from the 1∶1 Ce∶Zr solid solution, the phases of Ce1 − xZrxO2 remain stable on calcining to 1000 °C, but the particles sinter and the surface areas decrease significantly. The materials have been characterised by Powder X-ray Diffraction (PXD), IR and Raman Spectroscopy, microanalysis, Thermogravimetric Analysis (TGA), X-ray Fluorescence (XRF) and BET (surface area measurements). In selected cases, high resolution Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images were recorded to examine the particle morphology.

Supplementary files

Article information

Article type
06 Oct 2000
27 Oct 2000
First published
29 Nov 2000

J. Mater. Chem., 2001,11, 561-568

Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; the one-step synthesis of nano-particulate Ce1 − xZrxO2 (x = 0–1) solid solutions

A. Cabañas, J. A. Darr, E. Lester and M. Poliakoff, J. Mater. Chem., 2001, 11, 561 DOI: 10.1039/B008095K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.