Issue 1, 2001

Abstract

The present study aimed to assess whether urinary germanium concentration can be used as a biomarker of inhalation exposure to airborne dust from metallic germanium (Ge) or GeO2 in the occupational setting. A novel hydride generation-based method coupled with flow-injection graphite furnace atomic absorption spectrometry (HG/FI-GFAAS) was developed for the determination of urinary germanium. It was found that urinary germanium concentration could be reliably determined by a standard additions method after thorough digestion of the urine and careful pH adjustment of the digest. The limit of detection (LOD) in urine for the HG/FI-GFAAS method was 0.25 µg Ge L−1. In Belgian control male subjects, the urinary germanium concentration was below this LOD. In 75 workers currently exposed to inorganic germanium compounds, respirable and inhalable concentrations of germanium in the aerosols were measured on Monday and Friday at the job sites using personal air samplers. Spot-urine samples were collected on the same days before and after the work shift. The germanium concentrations of respirable dust correlated very well with those of inhalable dust and represented 20% of the inhalable fraction. Workers exposed to metallic Ge dust were on average ten times less exposed to germanium than those whose exposure involved GeO2 (3.4 versus 33.8 µg Ge m−3). This difference was reflected in the urinary germanium concentrations (3.4 versus 23.4 µg Ge g−1 creatinine). Regression analysis showed that the concentration of germanium in the inhalable fraction explained 42% of the post-shift urinary germanium concentration either on Monday or on Friday, whereas in a subgroup of 52 workers mainly exposed to metallic germanium dust 57% (r = 0.76) of the Monday post-shift urinary germanium was explained. Urinary elimination kinetics were studied in seven workers exposed to airborne dust of either metallic Ge or GeO2. The urinary elimination rate of germanium was characterised by half-times ranging from 8.2 to 18.1 h (on average 12 h 46 min). The present study did not allow discrimination between the germanium species to which the workers were exposed, but it showed fast urinary elimination kinetics for inhalation exposure to dust of metallic Ge and GeO2. It pointed out that urine samples taken at the end of the work shift can be used for biological monitoring of inorganic germanium exposure in the occupational setting.

Article information

Article type
Paper
Submitted
04 Sep 2000
Accepted
18 Oct 2000
First published
14 Feb 2001

J. Environ. Monit., 2001,3, 67-73

Determination of germanium in urine and its usefulness for biomonitoring of inhalation exposure to inorganic germanium in the occupational setting

H. A. Roels and J. Buchet, J. Environ. Monit., 2001, 3, 67 DOI: 10.1039/B007132N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements