. Chem. Phys.; citation_volume=10; citation_pages=75 ; citation_publication_date=1966; " /> . Chem. Phys.; citation_volume=12; citation_pages=487 ; citation_publication_date=1967; " /> .; citation_volume=111; citation_pages=481 ; citation_publication_date=1958; " /> .; citation_volume=111; citation_pages=494 ; citation_publication_date=1958; " /> .; citation_volume=112; citation_pages=855 ; citation_publication_date=1958; " /> .; citation_volume=131; citation_pages=259 ; citation_publication_date=1963; " /> .; citation_volume=141; citation_pages=34 ; citation_publication_date=1966; " /> .; citation_volume=145; citation_pages=7 ; citation_publication_date=1966; " /> . A; citation_volume=6; citation_pages=185 ; citation_publication_date=1972; " /> . A; citation_volume=6; citation_pages=173 ; citation_publication_date=1972; " />
Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Line broadening coefficients of the CO2–Ar fundamental ν3 band are obtained experimentally and theoretically for temperatures from 120 to 765 K. The experimental results are obtained by Fourier-transform infrared spectroscopy. Theoretical values are provided [italic v (to differentiate from Times ital nu)]ia quantum-mechanical (close coupling and coupled states) approaches as well as semiclassical (improved Smith–Giraud–Cooper and Robert–Bonamy) methods. The most up-to-date CO2–Ar ab initio intermolecular potential (J. M. Hutson, A. Ernesti, M. M. Law, C. F. Roche and R. J. Wheatley, J. Chem. Phys., 1996, 105, 9130) is employed for all calculations. For all the temperatures probed, theoretical values are found to be in a rather good agreement with experiment. In addition, the Raman Q(j) line broadening coefficients and the application of the random phase approximation are presented.


Page: ^ Top