Equilibrium adsorption of linear and branched C6 alkanes on silicalite-1 studied by the tapered element oscillating microbalance
Abstract
The equilibrium adsorption of linear and branched C6 alkanes n-hexane, 2-methylpentane, 3-methylpentane and 2,3-dimethylbutane on silicalite-1 has been investigated using a novel technique—the tapered element oscillating microbalance (TEOM). For n-hexane, a small “kink ” in the isotherm is observed at about 4 molecule (unit cell of silicalite-1)−1. The measured isotherms of both 2-methylpentane and 3-methylpentane at 303 K for the first time show a second-step adsorption at loadings over 4 molecule (unit cell)−1. A two-step adsorption behavior is confirmed for single branched C6 alkanes. This observation is in good agreement with the picture of two distinct adsorption locations for single branched alkanes in silicalite-1 indicated by other techniques. The maximum loading for 2,3-dimethylbutane is about 4 molecule (unit cell)−1 under the conditions investigated and the molecules reside completely in the intersections. A dual-site Langmuir expression appropriately describes the equilibrium data for n-hexane, 2-methylpentane and 3-methylpentane, while the isotherms of 2,3-dimethylbutane can be described by the Langmuir model. The derived thermodynamic properties such as adsorption enthalpy and entropy agree with those available, determined by other techniques. The observed two-step adsorption behavior for single branched C6 alkanes on silicalite-1 is attributed to the large difference in the adsorption entropy between the molecular locations in the channel intersections and in the zigzag channels.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        