Issue 8, 2001

Glucose biochip: dual analyte response in connection to two pre-column enzymatic reactions

Abstract

This article describes a novel ‘Lab-on-a-Chip’ protocol generating two electrophoretic peaks for a single analyte, based on the coupling of two different pre-column enzymatic reactions of the same substrate followed by electrophoretic separation of the reaction products. Such operation is illustrated for the measurement of glucose in connection to the corresponding glucose oxidase (GOx) and glucose dehydrogenase (GDH) reactions. The pre-column enzymatic reactions generate hydrogen peroxide and NADH species, that are separated (based on their different charges) and detected at the end-column amperometric detector. The peak current ratio can be used for confirming the peak identity, estimating the peak purity, addressing co-migrating interferences, and deviations from linearity. A driving voltage of 2000 V results in peroxide and NADH migration times of 93 and 260 s, respectively. Factors influencing the unique dual glucose response are examined and optimized. The concept can be extended to different target analytes based on the coupling of two pre-column reactions with electrophoretic separation of the reaction products.

Article information

Article type
Communication
Submitted
10 Apr 2001
Accepted
14 Jun 2001
First published
03 Jul 2001

Analyst, 2001,126, 1203-1206

Glucose biochip: dual analyte response in connection to two pre-column enzymatic reactions

J. Wang, M. P. Chatrathi and A. Ibañez, Analyst, 2001, 126, 1203 DOI: 10.1039/B103193G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements