Issue 12, 2000

Abstract

Silica gels doped with methylviologen (MV), which is a photoredox and photochromic compound, have been prepared under both acidic and basic conditions. The oxidation process of the reduced species, MV+, formed by UV irradiation of the gels, was investigated on the basis of UV absorption measurements. The magnitude of the absorption maximum of MV+ in the gels gradually decreased with time after irradiation, as is observed for MV+ in solution, indicating that the photoredox behavior of MV in the gel matrix is very similar to that in solution. The lifetime of MV+ increased with increasing microviscosity around MV after gelation in the gels prepared under acidic conditions. The lifetime of MV+, however, reached a maximum and then gradually decreased as the gel was aged, suggesting that the oxidation of MV+ to more stable MV2+ readily occurred due to the restriction of the diffusion of MV+ and oxidized solvents. Moreover, the lifetime of MV+ in the gels prepared under basic conditions reached a maximum at an earlier stage of gel aging than for the gels prepared under acidic conditions because the microviscosity around the MV molecules at the gelation point under basic conditions was greater than that under acidic conditions.

Article information

Article type
Paper
Submitted
08 May 2000
Accepted
30 Aug 2000
First published
27 Oct 2000

J. Mater. Chem., 2000,10, 2765-2768

Photoredox behavior of methylviologen doped in silica gel matrices

Y. Kotani, A. Matsuda, M. Tatsumisago and T. Minami, J. Mater. Chem., 2000, 10, 2765 DOI: 10.1039/B003647L

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements