Issue 20, 2000

Structure and function of surfactant protein B and C in lipid monolayers: a scanning force microscopy study

Abstract

This study focuses on the impact of surfactant protein C and B on lipid monolayers at various surface pressures. The artificial system is composed of the saturated phospholipids dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in a molar ratio of 4:1 with 0.2 mol% SP-B and/or 0.4 mol% SP-C. A dominating influence of SP-C on the morphology of lipid monolayers at high surface pressure was found. Even in the presence of both proteins structural peculiarities typical for SP-C were found at elevated pressure employing tapping mode scanning force microscopy of LB-films. Stacked bilayer-protrusions known to be induced by SP-C are visible in films containing SP-C together with SP-B. The findings were corroborated by fluorescence microscopy at the air/water interface and are consistent with the appearance of the corresponding isotherms. In the low pressure regime, however, disc-like protrusions characteristic of SP-B containing films are discernible. Filamentous LE domains with large boundaries arise due to the reduced line tension in the presence of surface active proteins, particularly SP-B. Remarkably, SP-B fluidizes the monolayer to a larger extent than SP-C as revealed by scanning force microscopy images. These findings show that SP-B and SP-C interact independently of each other. Therefore we conclude that SP-C may be responsible for the fast respreading process during the breathing cycle while SP-B removes material from the monolayer in more discrete portions.

Article information

Article type
Paper
Submitted
24 May 2000
Accepted
14 Aug 2000
First published
21 Sep 2000

Phys. Chem. Chem. Phys., 2000,2, 4586-4593

Structure and function of surfactant protein B and C in lipid monolayers: a scanning force microscopy study

S. Krol, A. Janshoff, M. Ross and H. Galla, Phys. Chem. Chem. Phys., 2000, 2, 4586 DOI: 10.1039/B004145I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements