Volume 111, 1999

Interactions between poly(2-ethylacrylic acid) and lipid bilayer membranes: Effects of cholesterol and grafted poly(ethylene glycol)

Abstract

The exchange of the protonatable polymer, poly(2-ethylacrylic acid) (PEAA), has been studied with vesicle membranes containing cholesterol from 0 to 60 mol% or PEG2000-lipid (5 mol%). The release of an entrapped dye from 100 nm extruded liposomes was used as an assay for membrane perturbation by the polymer as a function of pH. The inclusion of cholesterol was found to reduce the pH at which the polymer caused release of the dye from the lipid vesicles, and the degree of polymer protonation (i.e., degree of hydrophobicity) correlated well with the increase in elastic expansion modulus of the vesicle bilayer. The results are discussed in terms of a balance between polymer solubility and membrane expansion. With respect to the PEG barrier, the presence of 5 mol% PEG2000, which represents full surface coverage, did not prevent PEAA from inducing contents release, demonstrating that highly hydrated polymeric layers are not effective barriers for other water soluble polymers, and may point to some association between the two polymers.

Article information

Article type
Paper

Faraday Discuss., 1999,111, 103-110

Interactions between poly(2-ethylacrylic acid) and lipid bilayer membranes: Effects of cholesterol and grafted poly(ethylene glycol)

D. Needham, J. Mills and G. Eichenbaum, Faraday Discuss., 1999, 111, 103 DOI: 10.1039/A808717B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements