Issue 18, 1999

Nonlinear hydrogen bonds of the type (CH2)2Z···HY: The rotational spectrum of a complex of methylenecyclopropane and hydrogen bromide

Abstract

The rotational spectra of the isotopomers mecp···H79Br, mecp···H81Br and mecp···D79Br (mecp=methylenecyclopropane) of a complex formed between mecp and hydrogen bromide were observed by using a pulsed-nozzle, Fourier-transform microwave spectrometer. Accurate values of the rotational constants A0, B0 and C0, the centrifugal distortion constants ΔJ, ΔJK and δJ, and the components χaa, (χbbcc) and χab of the Br nuclear quadrupole coupling tensor were determined in each case. These spectroscopic constants were interpreted to show that mecp···HBr has Cs symmetry, with the HBr subunit lying in the principal inertial plane ab, which coincides with the molecular symmetry plane. The H atom of HBr forms a hydrogen bond to the centre (*) of the mecp π bond. The angle φ included by the unique C atom of the cyclopropyl ring, the centre of the π bond and the H atom of HBr is 88.8(10)° and the distance r(*···H)=2.353(18) Å. The hydrogen bond *···H–Br deviates from linearity by ϑ=18.03(23)° in a direction that suggests a secondary interaction of δ-Br with two of the protons of the cyclopropyl ring. The properties φ, ϑ, r(Z···X) and r(Hring···Y) of the complexes (CH2)2Z···XY, where Z=O, S or C2CH2 and XY=HCl, HBr or ClF are compared and the reason why the hydrogen bonds Z···H–Y are significantly nonlinear, while the ‘chlorine’ bonds Z···Cl–F remain close to linearity, is considered.

Supplementary files

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 4175-4180

Nonlinear hydrogen bonds of the type (CH2)2Z···HY: The rotational spectrum of a complex of methylenecyclopropane and hydrogen bromide

A. C. Legon and D. G. Lister, Phys. Chem. Chem. Phys., 1999, 1, 4175 DOI: 10.1039/A904963K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements