A kinetic study of the reactions of NO3 with methyl vinyl ketone, methacrolein, acrolein, methyl acrylate and methyl methacrylate
Abstract
Absolute and relative-rate techniques have been used to obtain rate coefficients for the reactions: NO3+CH3C(O)CHCH2→products (1), NO3+CH2C(CH3)CHO→products (2), NO3+CH2CHCHO→ products (3), and NO3+CH2CHC(O)OCH3→products (4). The reaction NO3+CH2C(CH3)C(O)OCH3→ products (5), has been investigated by a relative-rate method only. The rate coefficients obtained by the relative-rate method at T=296±2 K and P=760 Torr are k1=(4.7±1.7)×10-16 cm3 molecule-1 s-1, k2=(3.7±1.0)×10-15 cm3 molecule-1 s-1, k3=(1.1±0.4)×10-15 cm3 molecule-1 s-1, k4=(1.0±0.6)×10-16 cm3 molecule-1 s-1 and k5=(3.6±1.3)×10-15 cm3 molecule-1 s-1. The rate coefficients determined by the discharge-flow technique at low pressure (P=1–10 Torr) and at T=293–303 K are k1=(3.2±0.6)×10-16 cm3 molecule-1 s-1, k2=(9.6±2.0)×10-15 cm3 molecule-1 s-1, k3=(8.9±2.8)×10-15 cm3 molecule-1 s-1, k4=(1.9±0.4)×10-16 cm3 molecule-1 s-1. The discrepancy between the values obtained from the relative-rate technique and the absolute technique are discussed and explained in terms of interference in the absolute study caused by secondary chemistry and fast-reacting impurities. Product studies reveal that methyl glyoxal is a product of reactions (1) and (2) along with peroxymethacryloyl nitrate (MPAN) for reaction (2) in air. A diurnally varying boundary-layer model suggests that reaction (2) is an important loss process for methacrolein and that it can lead to the generation of OH at night.