Issue 8, 1999

Investigations on the nature and redox properties of the transients formed on pulse radiolysis of aqueous solutions of 2-(phenylthio)ethanol

Abstract

The radical cation of 2-(phenylthio)ethanol (PTE)+, generated on reaction of specific one-electron oxidants Cl2-, Tl2+, SO4-, CCl3OO, Br2-, by pulse radiolysis in aqueous solutions of PTE exhibits absorption bands at 315 and 530 nm. Pulse radiolysis of PTE in 1,2-dichloroethane also produced a similar transient absorption spectrum. The hydroxyl radicals are observed to react with a bimolecular rate constant of 7.5×109 d mol-1 s-1 and form absorption bands at 300, 365 and 530 nm. While the 530 nm band decayed by first order kinetics with k=2.1×104 s-1, other bands showed mixed kinetics. O- reacts exclusively by H atom abstraction forming a transient absorption band in 290–330 nm region, H reacts both by H abstraction and H-adduct formation. Based on these studies, OH radicals are inferred to react by electron transfer, H abstraction and OH-adduct formation. The radical cation reacts with electron donors, I-, N3-, with a high rate constant value. In neutral solutions, eaq- reacts with a bimolecular rate constant of 7.1×108 d mol-1 s-1 and the transient absorption band at 360 nm (ε=1.4×103 d mol-1 cm-1) is assigned to H-adduct formed on protonation of radical anion (pKa=7.9). In basic solutions, the radical anion has very small absorption at 360 nm (ε=0.6×103 d mol-1 cm-1). The radical anion formed on reaction of eaq- with PTE at pH 12 is able to transfer an electron to MV2+ whereas at neutral pH, electron transfer is not possible. The reduction potential for the PTE/PTE- couple is determined to be -1.23 V.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 1919-1926

Investigations on the nature and redox properties of the transients formed on pulse radiolysis of aqueous solutions of 2-(phenylthio)ethanol

V. B. Gawandi, H. Mohan and J. P. Mittal, Phys. Chem. Chem. Phys., 1999, 1, 1919 DOI: 10.1039/A809900F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements