Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 1999
Previous Article Next Article

Abinitio potential-energy functions for excited state intramolecular proton transfer: a comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone

Abstract

Potential-energy profiles along the minimum-energy reaction path for intramolecular proton transfer in the 1ππ* excited state have been calculated for the title compounds. The CASSCF and CIS electronic-structure methods have been employed for excited-state geometry optimization. Single-point energy calculations along the reaction path have been performed using the CASPT2 and TDDFT methods. The TDDFT method has been tested against accurate CASSCF and CASPT2 data for malonaldehyde. CASPT2 yields transition energies for photon absorption and emission which are in excellent agreement with experimental data (within 0.2 eV). The CASPT2 potential energy functions exhibit, however, artifactual kinks (on a scale of a single kcal mol-1) which reflect inherent limitations of the CASSCF-based perturbation approach. TDDFT yields potential-energy functions which are essentially parallel to the CASPT2 functions and free of artifacts. Transition energies for absorption and emission are systematically overestimated, however, by about 0.5 eV in TDDFT. For all three title compounds, a barrierless 1ππ* potential-energy function is predicted. The location of the 1ππ* minimum varies from near-enol in salicylic acid to near-keto in 7-hydroxy-1-indanone.

Back to tab navigation

Article information


Phys. Chem. Chem. Phys., 1999,1, 3065-3072
Article type
Paper

Ab initio potential-energy functions for excited state intramolecular proton transfer: a comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone

A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys., 1999, 1, 3065
DOI: 10.1039/A902565K

Social activity

Search articles by author

Spotlight

Advertisements