Issue 1, 1999

Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy

Abstract

The cumulative particle size distribution of microcrystalline cellulose, a widely used pharmaceutical excipient, was determined using near infrared (NIR) reflectance spectroscopy. Forward angle laser light scattering measurements were used to provide reference particle size values corresponding to different quantiles and then used to calibrate the NIR data. Two different chemometric methods, three wavelength multiple linear regression and principal components regression (three components), were compared. For each method, calibration equations were produced at each of eleven quantiles (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95%). NIR predicted cumulative frequency particle-size distributions were calculated for each of the calibration samples (n = 34) and for an independent test set (n = 23). The NIR procedure was able to predict those obtained via forward angle laser light scattering.

Article information

Article type
Paper

Analyst, 1999,124, 33-36

Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy

A. J. O’Neil, R. D. Jee and A. C. Moffat, Analyst, 1999, 124, 33 DOI: 10.1039/A807134I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements