Reductive free-radical alkylations and cyclisations mediated by 1-alkylcyclohexa-2,5-diene-1-carboxylic acids
Abstract
A range of 1-alkylcyclohexa-2,5-diene-1-carboxylic acids were prepared by Birch reduction–alkylation of benzoic acid and their efficiency as mediators of alkyl radical chain addition and cyclisation processes was investigated. Reductive alkylations were respectably successful, even with only one or two equivalents of alkene, for secondary, tertiary and benzylic radicals. Reaction of 1-[2-(cyclohex-2-enyloxy)ethyl]cyclohexa-2,5-diene-1-carboxylic acid yielded the product of exo-trig-cyclisation, i.e. 7-oxabicyclo[4.3.0]nonane, in a yield comparable to that obtained from the tributyltin hydride induced cyclisation of 3-(2′-iodoethoxy)cyclohexene. This, together with the isolation of both exo- and endo-cyclisation products from 1-[2-(6,6-dimethylbicyclo[3.1.1]hept-2-en-2-ylmethoxy)ethyl]cyclohexa-2,5-diene-1-carboxylic acid established that ring closures could also be satisfactorily mediated with these reagents. Preparations were completely free of metal contaminants and direct reduction of the alkyl radicals, prior to addition or cyclisation, was completely absent. However, the desired products were accompanied by alkylbenzenes, together with by-products from the initiator decompositions, and this complicated work-up. Failure to obtain 1-[2-(prop-2-yn-1-yloxy)cyclohexyl]cyclohexa-2,5-diene-1-carboxylic acid in Birch reductive alkylations with trans-1-iodo-2-(prop-2-yn-1-yloxy)cyclohexane (and the corresponding bromide) indicated a limitation on precursor synthesis. The Birch reduction–alkylation was not of universal applicability and was suppressed for alkyl halides having β-substituents.