Issue 12, 1998

Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)2}-,

Abstract

We present the crystal structures and magnetic properties of a series of magnetic compounds, MII{N(CN)2}2, where M=Cu (1), Ni (2), Co (3) and Fe (4), and [Mn{N(CN)2}2(C2H5OH)2]Z·(CH3)2CO (5). In the isostructural compounds 14, the dicyanamide anion is triply coordinating through its three nitrogen atoms. It bridges the metal ions to form infinite 3D metal-organic frameworks with a rutile-type structure. The framework contains doubly bridged M(–Nâ–·C–N–Câ–·N–)2 ribbons that link approximately orthogonally through the amide nitrogen atoms. The Jahn–Teller distortion in 1 has a strong influence on the packing arrangement (M–N bond lengths: 1.98 and 2.47 Å for 1 and 2.10 and 2.15 Å for 3). On lowering the temperature the bond distances in 1 remain unchanged except for a decrease of the M–Namide length to 2.45 Å. Magnetic data for 1 obey the Curie–Weiss law (Θ=-2.1 K). 2 and 3 are ferromagnets with Curie temperatures (TC) of 9 and 21 K and are characterized by hysteresis loops of 710 and 7975 Oe at 2 K, remnant magnetization, magnetization approaching the expected saturation (gS) of 2 and 3 µB in high field, absorptive component (χ″) in the AC magnetization and λ peak in the heat capacity data. 4 is similarly characterized and shows behaviour that is characteristic of a canted antiferromagnet: the Weiss constant is temperature dependent (+3 K in the range 200–300 K), there is a sharper peak than for 1 or 2 in the AC magnetization and the isothermal magnetization at 3 K increases monotonically to ≈1.3 µB (expected to be 4 µB for ferromagnetic alignment of the spins) in a field of 8 T. Its coercive field (17800 Oe) is the largest observed for any metal-organic compound and exceeds those of alloys of SmCo5 and Nd2Fe14B. The maximum energy product (B · H) is the highest for 3 and is comparable to alloys of Sm–Co. We attribute the large coercive field to a combination of single ion and particle shape anisotropies. 5 is paramagnetic at high temperature with Θ=-3 K. Below 16 K it behaves as a canted antiferromagnet with a very weak resultant spontaneous magnetization.

Article information

Article type
Paper

New J. Chem., 1998,22, 1515-1524

Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)2}-,

M. Kurmoo and C. J. Kepert, New J. Chem., 1998, 22, 1515 DOI: 10.1039/A803165G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements