Issue 3, 1998

Bulk and surface analysis of a supported Pt[ndash ]MoOx–Al2O3model system in the fresh and sulfided state

Abstract

The bulk composition, structure and valence state of a model catalyst containing 3% Pt and 12% MoO3 supported on Al2O3 have been studied by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS). Electron microscopy (EM) indicated that molybdenum oxide was likely to be present as a thin surface layer of MoVI as shown by EDX and XPS. MoVI was not quantitatively reduced to MoV and MoIV upon H2 treatment at 673 K. Sulfidation by H2S at 673 K produced more MoIV, mainly as MoS2 spread over the surface and/or in the pores of alumina. A constant in-depth Mo ISS signal indicated that there were larger Mo particles. Sulfur, in turn, was removed by ISS, pointing to the presence of S adspecies other than MoS2, in agreement with XPS. Pt was distributed as separate small crystallites. Reduction created almost clean metallic Pt sputtered away by ISS, indicating its very disperse character. EM, XRD and XPS confirmed that some Pt transformed to PtS upon H2S–H2 treatment, larger PtS crystallites coexisting with smaller Pt particles. A reduced catalyst was very active in cyclohexene hydrogenation; much lower activity with increased benzene selectivity was observed after sulfidation.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1998,94, 459-466

Bulk and surface analysis of a supported Pt[ndash ]MoOx–Al2O3model system in the fresh and sulfided state

Z. Paál, P. Te′te′nyi, M. Muhler, U. Wild, J-M. Manoli and C. Potvin, J. Chem. Soc., Faraday Trans., 1998, 94, 459 DOI: 10.1039/A705948E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements