Issue 12, 1997

The humidity dependence of the electrical conductivity of a solublepolyaniline–poly(vinyl alcohol) composite film

Abstract

A humidity-sensitive composite film has been synthesized that consists of soluble polyaniline (PAn) and poly(vinyl alcohol) (PVA). PAn gave a percolation threshold where the electrical conductivity rose sharply at a volume fraction of 0.1%. This value is very small compared with that (about 5 vol%) reported in general for composite films consisting of conducting and non-conducting polymers, indicating that the two polymers used in this study were mixing completely. The conductivity of the PAn–PVA composite was proportional to the relative humidity, and the linearity was valid from 3×10–5 to 1.5×10–1 S cm–1 . The response time of the composite for the humidity change was 45 s and 9 min for moistening and desiccating steps, respectively. The conductivity of the composite film varied depending on the doping level of PAn, which was affected by the concentration of water molecules surrounding the conducting polymer. At high humidity, the PAn was in the form of an emeraldine salt, and transformed into a non-conducting base with decreasing environmental humidity.

Article information

Article type
Paper

J. Mater. Chem., 1997,7, 2363-2366

The humidity dependence of the electrical conductivity of a solublepolyaniline–poly(vinyl alcohol) composite film

K. Ogura, T. Saino, M. Nakayama and H. Shiigi, J. Mater. Chem., 1997, 7, 2363 DOI: 10.1039/A705463G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements