Issue 4, 1997

Lactate Amperometric Biosensor Based on an Electrosynthesized Bilayer Film with Covalently Immobilized Enzyme

Abstract

An alternative approach to the fabrication of an amperometric biosensor, which combines electrochemical polymerization of a bilayer film and covalent binding of the enzyme, is presented. A Pt electrode modified by an anti-interferent poly(pyrrole) layer is covered by a poly(tyramine) film, exposing amino groups that are then used for the covalent attachment of lactate oxidase after activation with glutaraldehyde. In this way, a fabrication procedure is obtained that combines the advantages of electrochemical polymerization (high spatial control, no restrictions in electrode shape and dimension, reproducible film thickness even in the sub-micrometre range) with those of covalent binding of the enzyme (no enzyme loss, higher response stability and increased lifetime of the sensor). The interferent rejection efficiency is dictated by the diffusional barrier provided by the bilayer membrane and by the degree of permselectivity that can be built up in the poly(pyrrole) film. A peculiar property was displayed by the bilayer, i.e., the ability to separate L-lactate and residual interferent responses in the time domain in both flow injection and batch addition experiments. The resulting L-lactate amperometric biosensor was characterized in terms of sensitivity, response time, linear response range, stability and rejection of electroactive interferents.

Article information

Article type
Paper

Analyst, 1997,122, 365-369

Lactate Amperometric Biosensor Based on an Electrosynthesized Bilayer Film with Covalently Immobilized Enzyme

F. Palmisano, G. E. De Benedetto and C. G. Zambonin, Analyst, 1997, 122, 365 DOI: 10.1039/A606849I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements