A statistical mechanical description of biomolecular hydration
Abstract
An efficient and accurate theoretical description of the structural hydration of biological macromolecules is presented. The hydration of molecules of almost arbitrary size (tRNA, antibody–antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystalline environment. The biomolecular structure obtained from X-ray crystallography, NMR or modelling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density, analogous to the corresponding electron density in an X-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.