Issue 22, 1994

Ionization radii of compressed atoms

Abstract

The compression of all atoms has been modelled by changing the free-atom boundary condition obeyed by electronic wavefunctions, from r [graphic omitted] ∞, ψ(r)= 0 to r [graphic omitted] ro, ψ(r)= 0, ro < ∞, in numerical Hartree–Fock–Slater calculations of electronic energy levels. As ro decreases, energy levels increase uniformly and by transferring the excess energy, an electron escapes from the valence shell when compression reaches a critical value of ro, characteristic of each atom. These ionization radii display remarkable periodicity, commensurate with the known chemistry of the elements, and introduce a new fundamental theoretical parameter that could serve to quantify chemical reactivity. Insofar as the compression of atomic wavefunctions occurs within crowded environments that lead to chemical interactions, ionization radii provide a more realistic index of the chemical properties of atoms in the bulk, than ionization energies, which are more appropriate in spectroscopic analyses of free atoms.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1994,90, 3377-3381

Ionization radii of compressed atoms

J. C. A. Boeyens, J. Chem. Soc., Faraday Trans., 1994, 90, 3377 DOI: 10.1039/FT9949003377

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements