A.C. impedance study of rate constants for two-phase electron-transfer reactions
Abstract
The a.c. impedance technique has been used for the measurement of electron-transfer rate constants between organic and inorganic redox couples at the water/1,2-dichloroethane interface. The organic compounds studied were lutetium diphthalocyanine, bis(pyridine)(meso-tetraphenylporphyrinato)ruthenium(II) and 7,7,8,8-tetra-cyanoquinodimethane; Fe(CN)3–/4–6 was in all cases the aqueous redox couple. Electron-transfer rate constants were calculated using recent theoretical developments based on a continuum media model. It is concluded that Marcus theory can be used to predict the rate constants for two-phase reactions. Potential-dependent transfer coefficients have been found and it is shown that the origin of this effect is ionic adsorption in the form of interfacial ion pairing.
Please wait while we load your content...