Volume 96, 1993

Energy partitioning in the reaction 2H2+ O2→ 2H2O on Pd(111)

Abstract

(2 + 1)-Photon resonance-enhanced multiphoton ionization (REMPI) has been used to detect desorbed H2O molecules in a state-specific manner. We have studied the reaction on Pd(111) at temperatures between 500 and 700 K in the regime of low oxygen coverages ( <0.05 ML) resulting from adsorption of ambient O2. D2 is dosed using a supersonic molecular beam with pulse fluxes resulting in stoichiometric coverages of D and O atoms. We find that D2O molecules are desorbed with a translational energy of ca. 300 K with weak, if any, dependence on the surface temperature. The angular distribution is nearly cosine in form. The spectroscopic data indicate that the D2O is desorbed with an average energy in the rotational degree of freedom close to the surface temperature. Experiments probing vibrationally excited states yielded negative results setting an upper limit for their population. These data show that most of the excess energy of the final OD + D reaction step of ca. 100 kJ mol–1 is not channelled into any of the degrees of freedom of the desorbed molecules. The data are interpreted such that the product water molecules reside on the surface for a time sufficient to dissipate most of the energy.

Article information

Article type
Paper

Faraday Discuss., 1993,96, 265-275

Energy partitioning in the reaction 2H2+ O2→ 2H2O on Pd(111)

A. de Meijere, K. W. Kolasinski and E. Hasselbrink, Faraday Discuss., 1993, 96, 265 DOI: 10.1039/FD9939600265

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements