Issue 7, 1993

Reactions of N(2 2D) and N(2 2P) with H2 and D2

Abstract

Rate constants for the reactions N(2 2D)+ H2(D2) and N(2 2P)+ H2(D2) have been measured by employing a pulse radiolysis–resonance absorption technique at temperatures between 213 and 300 K. The rate constants were expressed by the following Arrhenius equations: kN(2D)+H2= 4.6 × 10–11 exp(–8.8 × 102/T), kN(2D)+D2= 3.9 × 10–11 exp(–9.7 × 102/T), kN(2P)+H2= 3.5 × 10–13 exp(–9.6 × 102/T) and kN(2P)+D2= 1.9 × 10–13 exp(–9.2 × 102/T), in units of cm3 s–1. The results for N(2P) suggest that the main exit channels are not chemical reactions to produce NH (ND) radicals. The Arrhenius parameters for N(2D)+ H2(D2) are compared with the results of transition-state theoretical calculations as well as those of quasiclassical trajectory calculations on the basis of extended LEPS potential-energy surfaces.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1993,89, 995-999

Reactions of N(2 2D) and N(2 2P) with H2 and D2

T. Suzuki, Y. Shihira, T. Sato, H. Umemoto and S. Tsunashima, J. Chem. Soc., Faraday Trans., 1993, 89, 995 DOI: 10.1039/FT9938900995

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements