Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 9, 2017
Previous Article Next Article

Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing

Author affiliations

Abstract

Owing to the alluring possibility of contactless temperature probing with microscopic spatial resolution, photoluminescence nanothermometry at the nanoscale is rapidly advancing towards its successful application in biomedical sciences. The emergence of near-infrared nanothermometers has paved the way for temperature sensing at the deep tissue level. However, water dispersibility, adequate size at the nanoscale, and the capability to efficiently operate in the second and third biological optical transparency windows are the requirements that still have to be fulfilled in a single nanoprobe. In this work, these requirements are addressed by rare-earth doped nanoparticles with core/shell-architecture, dispersed in water, whose excitation and emission wavelengths conveniently fall within the biological optical transparency windows. Under heating-free 800 nm excitation, double nanothermometry is realized either with Ho3+–Nd3+ (1.18–1.34 μm) or Er3+–Nd3+ (1.55–1.34 μm) NIR emission band ratios, both displaying equal thermal sensitivities around 1.1% °C−1. It is further demonstrated that, along with the interionic energy transfer processes, the thermometric properties of these nanoparticles are also governed by the temperature dependent energy transfer to the surrounding solvent (water) molecules. Overall, this work presents a novel water dispersible double ratiometric nanothermometer operating in the second and third biological optical transparency windows. The temperature dependent particle–solvent interaction is also presented, which is critical for e.g. future in vivo applications.

Graphical abstract: Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing

Back to tab navigation

Supplementary files

Article information


Submitted
29 Oct 2016
Accepted
27 Jan 2017
First published
31 Jan 2017

Nanoscale, 2017,9, 3079-3085
Article type
Paper

Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer and F. Vetrone, Nanoscale, 2017, 9, 3079
DOI: 10.1039/C6NR08472A

Social activity

Search articles by author

Spotlight

Advertisements