Issue 1, 1991

Kinetic study on the thermal decomposition of copper(II) oxalate

Abstract

The thermal decomposition of copper(II) oxalate has been studied under vacuum using a constant-volume apparatus and a microbalance; and under dynamic atmospheres of air, nitrogen and oxygen using thermogravimetry and differential scanning calorimetry. The decomposition was found to proceed to copper metal under an inert atmosphere and vacuum; while in air and oxygen, copper(II) oxide was found to be the decomposition product. In each case the decomposition was found to be exothermic with an enthalpy change of –9 ± 2 kJ mol–1 in nitrogen and –134 ± 5 kJ mol–1 in air. Isothermal kinetic analysis showed the data to fit an Avrami–Erofeev relationship with n= 3 in each case. Arrhenius parameters are reported for each decomposition atmosphere and are compared to those of other transition-metal oxalates which appear in the literature.

The presence of a preparation effect is noted, as seen with other oxysalts; however, no evidence for the formation of copper(I) oxlate has been found which has previously been speculated to be an intermediate in the decomposition.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1991,87, 161-166

Kinetic study on the thermal decomposition of copper(II) oxalate

D. Broadbent, J. Dollimore, D. Dollimore and T. A. Evans, J. Chem. Soc., Faraday Trans., 1991, 87, 161 DOI: 10.1039/FT9918700161

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements